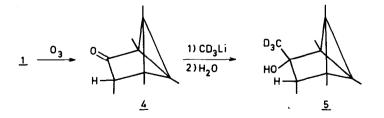
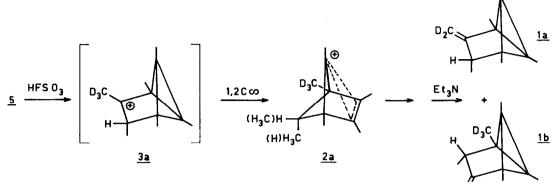

Tetrahedron Letters No. 29, pp 2535 - 2538, 1977. Pergamon Press. Printed in Great Britain.

UNUSUAL CHEMICAL REACTIVITY OF A 1,3 H-SHIFTED ISOMER OF HEXAMETHYLBENZVALENE

R.F. Heldeweg, H. Hogeveen and L. Zwart Department of Organic Chemistry, The University, Zernikelaan, Groningen, The Netherlands


(Received in UK 16 May 1977; accepted for publication 2 June 1977)

Using hexamethyldewarbenzene as starting material 1,2,4,5,6-pentamethyl-3-methylenetricyclo $[3.1.0.0^{2,6}]$ hexane (<u>1</u>) - an isomer of hexamethylbenzvalene - can be obtained in good yield (90%) by a protonation - deprotonation sequence at low temperatures using HCl and Et₃N, respectively.¹

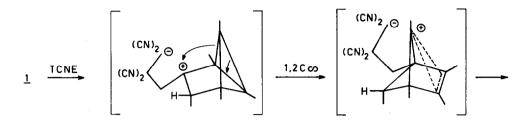


The fact that proton abstraction from ions $\frac{2}{2}$ (<u>exo-endo</u> mixture 3:1²) by Et₃N seems to take place at the C_{1,4} methyl groups rather than at the C_{2,3} methyl groups - a rather unexpected phenomenon made it desirable to have labelled material available in order to provide supporting evidence for the mechanistic scheme suggested.

Low-temperature ozonolysis of $\underline{1}^3$ afforded the corresponding ketone $\underline{4}$ which in turn was converted to alcohol $\underline{5}^4$ using CD₃Li.

In HFSO₃/SO₂ClF at -70° C protonation of <u>5</u> is followed by dehydration to form ion <u>3a</u> which rearranges to the stable ions <u>2a</u>.

Also if $\underline{1}$ is treated with DFSO₃/SO₂ClF at -70^oC deuterium is found to be selectively incorporated in the bridgehead methyl groups. Scrambling of the CD₃-label in ions $\underline{2a}$ over other methyl positions was not observed within 5 minutes at 0^oC. Upon quenching of ions $\underline{2a}$ with Et₃N at -70^oC the deuterium distribution pattern of the products $\underline{1a}$ and $\underline{1b}$ (obtained in a 1:3 ratio, respectively) indicates that proton (deuterium) abstraction has taken place from the bridgehead methyl groups of $\underline{2a}$.


These experiments are of special importance in view of the reactions which we have discovered between <u>1</u> and tetracyanoethylene (TCNE). This uniparticulate electrophile was reported⁵ to react with vinylcyclopropanes, to give a [2+2] adduct which thermally rearranges to a sevenmembered ring. Although <u>1</u> contains formally a vinylcyclopropane molety no [2+2] adduct could be observed by NMR spectroscopy in the reaction between <u>1</u> and TCNE. At room temperature a 1:1 adduct⁶ was isolated to which the structure of 7,7,8,8-tetracyano-2-<u>endo</u>-3,4-<u>trans</u>-5,6-pentamethyl tricyclo [4.3.0.0^{1,5}] nona-3-ene (<u>6</u>) was assigned using X-ray techniques.⁷ On NMR spectroscopic examination of the reaction at temperatures below 0^oC it was found that prior to the formation of compound <u>6</u> an intermediate adduct 7⁸ from TCNE and 1 was produced.

In order to obtain more information about the mechanistic details of both reactions $\underline{1} \rightarrow \underline{7}$ and $\underline{7} \rightarrow \underline{6}$ kinetic measurements were performed in solvents of different polarity as measured by E_T values⁹ (see table). As can be seen the rate of reaction $\underline{1} \rightarrow \underline{7}$ is influenced by the solvent polarity in agreement with an ionic reaction mechanism whereas that of reaction $\underline{7} \rightarrow \underline{6}$ is independent of solvent polarity supporting a concerted sigmatropic process. This must proceed with inversion of configuration of the migrating C-atom according to the Woodward-Hoffmann predictions for 1,3 C shifts¹⁰ and this is indeed observed (see Scheme).

Finally it is of interest to note that compound <u>6</u> contains a di-<u>cis</u>-fused cyclopropane constituting the first representative of the hitherto unsynthesized $[4.3.0.0^{1.5}]$ system¹¹ which according to

Gassmann should possess a twist-bend σ bond.¹²

The chemistry of compound 1 is being actively investigated. Scheme: 1

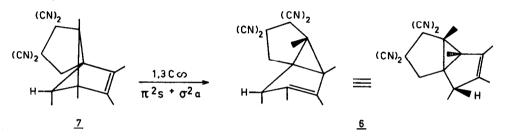


Table Kinetic measurements^a of reactions $1 \rightarrow 7$ and $7 \rightarrow 6$.

	Solvent	E _T value	$k_{1} \rightarrow I$ 1mol ⁻¹ sec ⁻¹ (-20 ^o C)	$k_{7}^{b} \rightarrow 6 \text{ sec}^{-1} (21^{\circ}\text{C})$
	C ₆ H ₅ Br	37.5	7.2 (+ 0.5) x 10^{-3}	5.4 (<u>+</u> 0.7) x 10^{-4}
	снстз	39.1	2.1 (+ 0.2) x 10^{-2}	7.5 (<u>+</u> 0.7) x 10 ⁻⁴
	снзсоснз	42.2	5.3 (<u>+</u> 0.7) x 10^{-2}	$3.9 (\pm 0.9) \times 10^{-4}$
	CH ₃ CN	46.0	≥ 1 ^C	5.5 (<u>+</u> 0.4) x 10 ⁻⁴
•				

- a) performed by integrating suitable NMR absorptions at appropriate intervals; concentrations of 1 and TCNE ranging from 5 x 10^{-2} to 20 x 10^{-2} mol 1^{-1} .
- b) determined for 50-75% conversion.
- c) too fast to be measured at -20° C by NMR spectroscopy.

Notes and References

- Notes and References
 1. Compound <u>1</u> has previously been assumed to possess the [2.2.0.0²,⁶] skeleton but from independent chemical and spectroscopic evidence structure <u>1</u> has been derived unambigueously for this isomer. Generally speaking either tricyclic[2.2.0.0²,⁶] or tricyclic[3.1.0.0²,⁶] structures can be obtained by reaction of ions of type <u>2</u> with nucleophiles and bases. H. Hogeveen and P.W. Kwant, Tetrahedron Lett., <u>1972</u>, 5357; J. Org. Chem., <u>39</u>, 2624, 2626 (1974).
 2. H. Hogeveen and H.C. Volger, Rec. Trav. Chim., <u>87</u>, 385, 1042 (1968); <u>88</u>, 353 (1969).
 3. A solution of 15.0 gr (92.6 mmol) of <u>1</u> in 1 lofCH₂Cl₂ containing 15 gr (0.19 mol) of pyridine was treated at -85°C with 1,2 eq. of ozone generated over a period of 3 hours. After work up (removal of pyridine by treatment with CH₂1) 7 gr (0.04 mol, <u>46%</u>) of ketone 4 was obtained
- (removal of pyridine by treatment with CH₂I) 7 gr (0.04 mol, 46%) of ketone 4 was obtained in 90% purity by distillation bp $18-22^{\circ}$ C/0.01 mm Hg. MS: M⁺ at 164 m/e,exact mass 164.124 m/e (calcd: 164.120 m/e); IR: C=O absorption at 1730 cm⁻¹; ¹H-NMR: 0.94 (d, J = 7 Hz, 3H) 1.05

(s, 3H), 1.12 (s, 3H), 1.46 (broad s, 6H), 1.70 (q, J = 7 Hz, 1H) ppm; 13 C-NMR: 2.7 (CH₃), 3.3 (CH₃), 4.3 (CH₃), 8.2 (CH₃), 12.5 (CH₃), 27.7 (C), 28.0 (C), 40.3 (C), 42.8 (CH), 51.7 (C), 221.0 (C=0) ppm.

- 4. At 0°C 1.0 gr (6.1 mmol) of ketone 4 was slowly added to a five-fold excess of CD_Li in ether solution. After stirring for 30 min. the reaction mixture was quenched with water. Alcohol 5 (only 1 isomer is formed) was purified by sublimation at room temperature affording 1.1 gr (6.0 mmol, 95%); mp 48-50°C. MS: M+ at 183 m/e, exact mass 183.174 m/e (calcd 183.170 m/e); IR: OH absorption at 3400 cm⁻¹; ¹H-NMR: 0.70 (d, J = 7 Hz, 3H), 0.92 (s, 3H), 0.95 (s, 3H), 1.20 (s, 3H), 1.24 (s, 3H), 1.30 (q, J = 7 Hz, 1H), 1.70 (s, 1H) ppm. When the reaction was carried out with CH₃Li an additional signal in the ¹H-NMR spectrum of the all-protio isomer was observed at 1.07 (s, 3H) ppm. ¹³C-NMR (all-protio isomer): 2.1 (CH₃), 3.2 (CH₃), 4.7 (CH₃), 7.9 (CH₃), 11.0 (CH₃), 21.1 (C), 21.5 (C), 23.3 (CH₃), 44.4 (C). 49.2 (CH), 50.4 (C), 81.9 (C) ppm.
 S. Sarel, A. Felzenstein and J. Yovell, J.C.S. Chem. Commun., <u>1974</u>, 753.
- 6. To a solution (or suspension) of 790 mgr (6.2 mmol) of TCNE in 10 ml. solvent (eg. acetone, chloroform, benzene) a solution of 1000 mgr (6.2 mmol) of 1 in 20 ml solvent was added. After stirring for 1 hour at room temperature 1750 mgr (6.0 mmol, 97%) of 6 was isolated and purified by recrystallization from cyclohexane, mp 123-124°C; MS: M⁺ at 290 m/e;IR: CN absorption at 2240 cm⁻¹, C=C absorption at 1660 cm⁻¹; 1H-NMR: 1.06 (d, J = 7 Hz, 3H), 1.35 (s, 3H), 1.60 (broad s, 9H), 2.51 (q, J = 7 Hz, 1H), 2.90 and 3.16 (AB q, J_{AB} = 14 Hz, 2H) ppm; 1³C-NMR: 11.4 (CH₃), 11.6 (CH₃), 11.6 (CH₃), 12.4 (CH₃), 15.6 (CH₃), 39.6 (CH₂), 43.1 (C), 45.6 (CH), 46.8 (C), 48.3 (C), 48.8 (C), 52.8 (C), 111.6 (CN), 112.1 (CN), 112.7 (CN), 114.1 (CN), 133.6 (sp²C), 138.8 (sp²C) ppm; correct elemental analysis.
 7. A.L. Spek, Cryst. Struct. Commun., 5, 699 (1976).
 8. ¹H-NMR of 7 at -20°C: 0.95 (d, J = 6 Hz, 3H), 1.20 (s, 3H), 1.48 (s, 3H), 1.77 (broad s, 6H) 3.05 and 3.15 (AB q, J_{AB} = 13 Hz, 2H), 3.40 (q, J = 6 Hz, 1H) ppm; ¹³C-NMR of 7 at -20°C: 6.5 (CH₃), 8.2 (CH₃), 10.5 (CH₃), 10.5 (CH₃), 16.0 (CH₃), 38.0 (CH₂), 48.0 (C), 52.6 (C), 58.6 (C), 64.2 (CH), 71.8 (C), 84.6 (C), 111.2 (CN), 112.0 (CN), 112.8 (CN) 113.2 (CN), 133.0 (sp²C), 146.0 (sp²C); Nucleophilic attack on the 3-centra bond of bicyclo[2.1.1]hexenyl ions 6. To a solution (or suspension) of 790 mgr (6.2 mmol) of TCNE in 10 ml. solvent (eg. acetone,
- (sp²C), 146.0 (sp²C); Nucleophilic attack on the 3-centra bond of bicyclo[2.1.1] hexenyl ions is known to occur at the back-side; H. Hogeveen and P.W. Kwant, J. Amer. Chem. Soc., 95, 7315 (1973).
- 9. È values taken from: K. Dimroth, C. Reichardt, T. Siepmann and F. Bohlmann, Ann. <u>661</u>, 1 (1963).
 10. R.B. Woodward and R. Hoffmann, J. Amer. Chem. Soc., <u>87</u>, 2511 (1965); see for similar examples: J.A. Berson, Acc. Chem. Res., <u>1968</u>, 152 and W.R. Roth and A. Friedrich, Tetrahedron Lett., 1969, 2607.
- 11) J.F. Liebmann and A. Greenberg, Chem. Revs., 76, 311 (1976).
- 12) P.G. Gassmann, J.C.S. Chem. Commun., 1967, 793. P.G. Gassmann and F.J. Williams, J. Amer. Chem. Soc., 93, 2704 (1971).